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Some single-molecule systems share a common feature: the system performs different cycles return-
ing after each cycle to the same state. In such systems we deal with renewal processes. Examples
include (1) single-molecule enzymatic reactions, (2) membrane transport through single-occupancy
channels, (3) single-molecule fluorescence spectroscopy, and (4) motion of molecular motors. The
paper is focused on the analysis of such systems by means of the renewal theory. To be more specific,
the theory of renewal processes is used to study multivariate distribution functions of the numbers
of different events in a given observation time. Our main results are simple formulas derived for the
Laplace transforms of the distribution functions. General results are illustrated by consideration of
several examples. [doi:10.1063/1.3551506]

I. INTRODUCTION

Some single-molecule systems share a common feature:
the system performs different cycles returning after each cycle
to the same state. A trajectory of such a system in the space
of its possible discrete states can be considered as a set of
different “loops” that start from the same “initial” state. Each
loop is a random walk among a subset of the states of the sys-
tem that ends with the return to the initial state. The final step
of the random walk that closes the loop bringing the system
back to the initial state will be referred to as an event. Transi-
tions that close loops of different types will be considered as
different events. We will assume that the system has no mem-
ory in the sense that after a loop is completed, and the system
returns to the initial state, it chooses the type of the next
loop randomly and independently of the prehistory. In such
systems we deal with renewal processes. Examples of such
systems include (1) single-molecule enzymatic reactions,
(2) transport through single occupancy membrane channels,
(3) single-molecule fluorescence spectroscopy, and (4)
transport of molecular motors (see Refs. 1–12 and references
therein).

The numbers of loops of different types in a given ob-
servation time provide rather detailed information about the
system. These numbers are random variables described by a
multivariate distribution function that parametrically depends
on the observation time t. Such distribution functions are in
the focus of the present study. Formally we deal with renewal
processes13, 14 with events of different types. Considering
each type of events as a different reaction channel, we will
use the term multichannel renewal processes. Our approach
to the problem is based on the fact that the distribution
functions of interest are nothing else than the probabilities
that corresponding sets of events have happened in time
t. Main results of the paper are simple formulas for the
Laplace transforms of the multivariate distribution functions,
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Eqs. (2.16), (2.17), (2.23), and (2.25). The former correspond
to the situation when the observation starts just after an
event has happened, and the system came back to the initial
state, while the latter correspond to the situation when the
observation begins at an arbitrary moment of time.

It may happen that the multivariate distribution function
contains information about some events (loops), which are of
no interest. In such a case one can eliminate this information
by summing up the complete distribution function over the
unimportant variables (numbers of unimportant events). As a
result one obtains the distribution function of the number of
events of interest only. At the same time, there is an alternative
way of finding this distribution function. The way includes
two steps. First, one has to eliminate unimportant events from
the initial formulation of the problem, i.e., to reformulate the
initial problem in terms of the events of interest only. After
that one can find the desired distribution function using the
results derived in the paper.

For example, in the simplest model of the enzymatic re-
action, E + S −→←− E S→E + P , substrate S binds to enzyme
E , and then enzyme–substrate complex E S decays forming
the free enzyme and either product P or substrate S. In this
example, according to the definitions above, events are decays
of the enzyme–substrate complex leading to the recovery of
the enzyme, and there are two types of the events (loops). Re-
sults presented in the paper allow one to find (i) the Laplace
transform of the distribution function of the numbers of events
of both types in time t , as well as (ii) the Laplace transform of
the distribution function of the number of substrate molecules
converted into products in time t by a single enzyme. Detailed
discussion of this example is given in Sec. III, where more
complex models of enzymatic reactions are also considered.
These models describe the effect of the inhibitor, competition
of substrates of different types for the enzyme, as well as re-
versible enzymatic reactions.

The outline of the paper is as follows. The general theory
is developed in Sec. II. After that several illustrative exam-
ples of increasing complexity are considered in Sec. III. In
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Sec. IV we summarize the results obtained in the paper and
briefly discuss the relation between the multivariate distribu-
tion functions and the propagator of a corresponding unidi-
rectional random walk on a multidimensional lattice.

II. THEORY

Consider a multichannel renewal process with events/
loops of m different types. Let W1, W2, . . . , Wm be the proba-
bilities of realization of each type of the events

W1 + W2 + · · · + Wm = 1, (2.1)

and ϕi (t) be the probability density of the waiting time for
an event of type i counted from the moment t = 0 when a
previous event had happened, and the system returned to the
initial state,

∫ ∞

0
ϕi (t)dt = 1 , i = 1 , 2 , . . . , m. (2.2)

The plan of this section is as follows. First, to introduce
the notations and the general idea of our approach to the prob-
lem we discuss renewal processes with one type of events in
Sec. II A. Then we consider renewal processes with events of
m types in Sec. II B. In both cases we assume that the ob-
servation starts just after an event has happened. In Sec. II C
we generalize the results obtained in Secs. II A and II B to
the case when the observation starts at an arbitrary moment
of time.

A. Renewal processes with one type of events

Consider a renewal process with one type of events as-
suming that the observation starts just after an event has hap-
pened. The probability density for the time interval between
successive events is denoted by ϕ(t). Let qn(t) be the proba-
bility density for time when the nth event has happened. Then

q1(t) = ϕ(t), (2.3)

and qn(t), n ≥ 2, satisfies the recurrence relation

qn(t) =
∫ t

0
q1(t − t ′)qn−1(t ′)dt ′ =

∫ t

0
ϕ(t − t ′)qn−1(t ′)dt ′.

(2.4)

As follows from Eqs. (2.3) and (2.4), the Laplace transform
of qn(t) is

q̂n(s) =
∫ ∞

0
e−st qn(t)dt = ϕ̂(s)n, (2.5)

where ϕ̂(s) is the Laplace transform of the probability density
ϕ(t).

Let P(n|t) be the distribution function of the number of
events observed in time t , i.e., the probability that just n events

have happened in this time. The probability of no events in
time t , P(0|t), is

P(0|t) = 1 −
∫ t

0
ϕ(t ′)dt ′. (2.6)

Its Laplace transform is given by

P̂(0|s) = 1

s
[1 − ϕ̂(s)] . (2.7)

The probability P(n|t), n ≥ 1, is the convolution of the prob-
ability density qn(t) with the probability P(0|t),

P(n|t) =
∫ t

0
P(0|t − t ′)qn(t ′)dt ′. (2.8)

Using Eqs. (2.5) and (2.7) we obtain

P̂(n|s) = ϕ̂(s)n P̂(0|s). (2.9)

When the waiting time probability density is single-
exponential, ϕ(t) = e−t/τ /τ , where τ is the mean time
between successive events, its Laplace transform is ϕ̂(s)
= 1/(1 + sτ ). In this case the Laplace transform in Eq. (2.9)
can be inverted leading to the Poisson distribution of the num-
ber of events observed in time t, P(n|t) = (t/τ )ne−t/τ /(n!).

B. Renewal processes with events of m types

Consider a m-channel renewal process. A series of events
containing ni events of type i , i = 1 , 2 , . . . , m, is denoted
by {n}m , where n is a m-dimensional vector with the compo-
nents (n1 , n2 , . . . , nm). Let q{n}m

(t) be the probability den-
sity for the duration of this series, i.e., q{n}m

(t) dt is the prob-
ability that the last event of the series happens between t and
t + dt assuming that the series began at t = 0. Only the du-
ration of the series as a whole is of interest, and it does not
matter how the events are ordered within the series. Let q (i)

ni
(t)

be the probability density for the time interval during which
ni events of type i have happened, i = 1 , 2 , . . . , m. We use
this probability density with i = m to write the recurrence re-
lation for q{n}m

(t),

q{n}m
(t) =

∫ t

0
q (m)

nm
(t − t ′)q{n}m−1

(t ′)dt ′. (2.10)

Respectively, the Laplace transform of q{n}m
(t) is

q̂{n}m
(s) = q̂ (m)

nm
(s)q̂{n}m−1

(s) =
m∏

i=1

q̂ (i)
ni

(s). (2.11)

Since q̂ (i)
ni

(s) = ϕ̂i (s)ni , Eq. (2.5), we can write q̂{n}m
(s) as

q̂{n}m
(s) =

m∏
i=1

ϕ̂i (s)ni , (2.12)

where n1 + n2 + . . . + nm ≥ 1.
Let P ({n}m |t) be the distribution function of the num-

bers of events of different types in time t . This distribution
function is the probability that the series of events {n}m has
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happened in time t . The probability of no events in time t ,
P ({0}m |t), is given by

P ({0}m |t) = 1 −
m∑

i=1

∫ t

0
wi (t

′)dt ′, (2.13)

where wi (t) is defined as

wi (t) = Wiϕi (t) , i = 1 , 2 , . . . , m, (2.14)

where Wi are the realization probabilities introduced in the
very beginning of this section. Probability P ({n}m |t) with
n1 + n2 + · · · + nm ≥ 1 can be written in terms of probability
P ({0}m |t) and probability density q{n}m

(t),

P ({n}m |t) = (n1 + n2 + · · · + nm)!

n1!n2! . . . nm!

×
(

m∏
i=1

W ni
i

) ∫ t

0
P

({0}m |t − t ′)q{n}m
(t ′)dt ′.

(2.15)

Here the factor in front of the integral is the realization prob-
ability of the series {n}m , whereas the integral gives the prob-
ability that duration of this series is equal to t . At m = 1
the relation in Eq. (2.15) reduces to that in Eq. (2.8). The
Laplace transforms of P ({0}m |t) and P ({n}m |t) with n1 +
n2 + · · · + nm ≥ 1 are given by

P̂ ({0}m |s) = 1

s

(
1 −

m∑
i=1

ŵi (s)

)
, (2.16)

and

P̂ ({n}m |s) = (n1 + n2 + · · · + nm)!

n1!n2! · · · nm!

×
(

m∏
i=1

ŵi (s)ni

)
P̂ ({0}m |s) . (2.17)

Here we have used the relation in Eq. (2.12) and the definition
of wi (t) in Eq. (2.14).

The expressions in Eqs. (2.16) and (2.17) provide gen-
eralization of the results in Eqs. (2.7) and (2.9) to the case
of multichannel renewal processes. They are main results of
this subsection. In Sec. II C we relax the assumption that the
observation begins just after an event has happened and gen-
eralize these results to the case when the observation begins
at an arbitrary moment of time.

C. Arbitrary beginning of the observation

Generalization of the results derived in Sec. II B to the
case when the observation begins at an arbitrary moment of
time can be performed in the conventional way.13, 14 First, we
introduce the probability density of the waiting time until the
first event of any type has happened. This probability density
for the duration of the interval with no event, ϕ0(t), is given
by

ϕ0(t) = 1

〈τ0〉 P ({0}m |t) , (2.18)

where 〈τ0〉 is the mean time found for the probability density
defined as the negative time derivative of P ({0}m |t). Using
the relation −d P ({0}m |t) /dt = ∑m

i=1 wi (t), we obtain

〈τ0〉 =
∫ ∞

0
P ({0}m |t) dt =

m∑
i=1

〈 τi 〉Wi , (2.19)

where 〈τi 〉 is the first moment of the distribution characterized
by the probability density ϕi (t), i = 1 , 2 , . . . , m,

〈τi 〉 =
∫ ∞

0
tϕi (t)dt = −dϕ̂i (s)

ds

∣∣∣∣
s=0

. (2.20)

The Laplace transform of ϕ0(t) has the form

ϕ̂0(s) = 1

〈τ0〉 P̂ ({0}m |s) = 1

s〈τ0〉

(
1 −

m∑
i=1

ŵi (s)

)
,

(2.21)

where we have used the relation in Eq. (2.16).
The probability of no events of any type in time, t , on

condition that the observation begins at an arbitrary moment
of time, Pa ({0}m |t), is given by

Pa ({0}m |t) = 1 −
∫ t

0
ϕ0(t ′)dt ′. (2.22)

Here and below subscript “a” is used to indicate that the ob-
servation begins at an arbitrary moment of time. The Laplace
transform of Pa ({0}m |t) is

P̂a ({0}m |s) = 1

s
(1 − ϕ̂o(s))

= 1

s

[
1 − 1

s〈τ0〉

(
1 −

m∑
i=1

ŵi (s)

)]
, (2.23)

where we have used the relation in Eq. (2.21).
The probability of a series of events {n}m , n1 + n2

+ · · · + nm ≥ 1, in time t , on condition that the observation
begins at an arbitrary moment of time, Pa ({n}m |t), is the con-
volution of the probability density ϕ0(t) with the probability
P ({n}m |t),

Pa ({n}m |t) =
∫ t

0
P

({n}m |t − t ′) ϕ0(t ′)dt ′. (2.24)

This probability is the multivariate distribution function of the
numbers of events of different types in time t . The Laplace
transform of this distribution function has the form

P̂a ({n}m |s) = P̂ ({n}m |s) ϕ̂0(s)

= (n1 + n2 + · · · + nm)!

n1!n2! · · · nm!

×
(

m∏
i=1

ŵi (s)ni

)
1

〈τ0〉 P̂ ({0}m |s)2 , (2.25)

where we have used the relations in Eqs. (2.17) and (2.21).

Downloaded 18 Feb 2011 to 128.231.5.116. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



074114-4 A. M. Berezhkovskii J. Chem. Phys. 134, 074114 (2011)

Expressions in Eqs. (2.23) and (2.25) are generalizations
of the results in Eqs. (2.16) and (2.17) to the case when the
observation begins at an arbitrary moment of time. In Sec. III
we discuss the relation between the results derived in this sec-
tion and the distribution functions that can be observed in the
experiment.

III. ILLUSTRATIVE EXAMPLES

To illustrate the general theory developed above, in this
section we discuss several examples that are ordered in the in-
creasing number of different types of events occurring in the
system under consideration. For the sake of simplicity, in all
examples we assume that the observation begins immediately
after an event has occurred and the previous loop has com-
pleted.

A. Simplest model of enzymatic turnovers by single
enzyme

In the simplest model of enzymatic reactions the sub-
strate S binds to the enzyme E forming the enzyme–substrate
complex E S. The complex decays either converting the sub-
strate into the product P or not, as shown in the kinetic
scheme

E + S−→←−
1

E S −→2 E + P. (3.1)

The numbers 1 and 2 in Eq. (3.1) show how the two decay
channels of the ES complex are enumerated. Each decay of
the ES complex is considered as an event. Decays in differ-
ent channels are considered as events of different types. After
each event the system returns to the same initial state. Here
and further on the transitions indicated by the arrows are not
necessarily single-exponential.

Let P (n1, n2|t) be the distribution function for the num-
bers of the two types of the events observed in time t . Ac-
cording to Eqs. (2.16) and (2.17) its Laplace transform is
given by

P̂ (0, 0|s) = 1

s
(1 − ŵ1(s) − ŵ2(s)) , (3.2)

P̂ (n1, n2|s) = (n1 + n2)!

n1!n2!
ŵ1(s)n1 ŵ2(s)n2 P̂ (0, 0|s) ,

(3.3)

where ŵi (s) is the Laplace transform of wi (t)
= Wiϕi (t), i = 1, 2. We assume that Wi and ϕi (t) are
known or can be found using available information about
the reaction. This issue is explained in Appendix A where
we also consider a special case when both the E S complex
formation and its decay are single-exponential processes
characterized by the rate constants.

Suppose one is interested in the distribution function of
the number of product molecules formed in time t , which we
denote by F(n2|t). The Laplace transform of this distribution

function, F̂(n2|s), can be found by using Eqs. (3.2) and (3.3),

F̂(n2|s) =
∞∑

n1=0

P̂(n2, n1|s). (3.4)

After some manipulations one can obtain

F̂ (0|s) = 1

s
(1 − v̂(s)) , (3.5)

F̂ (n|s) = v̂(s)n F̂(0|s), (3.6)

with v̂(s) given by15

v̂(s) = ŵ2(s)

1 − ŵ1(s)
. (3.7)

Expressions in Eqs. (3.5) and (3.6) describe the distribution of
the number of events in the renewal process with one type of
events [cf. Eqs. (2.7) and (2.9)]. The relation in Eq. (3.7) gives
the Laplace transform of the interevent waiting time proba-
bility density for this effective renewal process in terms of
functions ŵ1(s) and ŵ2(s). In Appendix B we show how this
expression can be derived starting with the kinetic scheme,
Eq. (3.1).

B. Effect of the inhibitor

In the presence of an inhibitor (I) the kinetic scheme in
Eq. (3.1) should be modified and takes the form

E + S−→←−
1

E S −→2 E + P, (3.8)

E + I−→←−
3

E I. (3.9)

In this case we deal with a three-channel renewal process in
which the third channel is the formation and decay of the
enzyme–inhibitor complex (EI). Again we assume that Wi

and ϕi (t), i = 1, 2, 3, are known or can be found on the
basis of the kinetic scheme (see the details in Appendix C).

Let P ({n}3 |t) , {n}3 = (n1, n2, n3), be the distribution
function for the numbers of events of different types observed
in time t . According to Eqs. (2.16) and (2.17) its Laplace
transform is given by

P̂ ({0}3 |s) = 1

s

(
1 −

3∑
i=1

ŵi (s)

)
, (3.10)

P̂ ({n}3 |s) = (n1 + n2 + n3)!

n1!n2! n3!

(
3∏

i=1

ŵi (s)ni

)
P̂ ({0}3 |s) ,

(3.11)

where ŵi (s) is the Laplace transform of wi (t)
= Wiϕi (t), i = 1, 2, 3.

The distribution function of the number of product
molecules formed in time t , F (n2|t), is

F (n2|t) =
∞∑

n1, n3=0

P ({n}3 |t) . (3.12)
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One can find its Laplace transform using Eqs. (3.10) and
(3.11) and carrying out the summation. As might be expected,
the result has the form given in Eqs. (3.5) and (3.6), in which
v̂(s) is now given by

v̂(s) = ŵ2(s)

1 − ŵ1(s) − ŵ3(s)
. (3.13)

This is the Laplace transform of the probability density of
the interevent waiting time, v(t), that describes an effective
renewal process with events of one type—formation of the
product molecules. One can alternatively derive the expres-
sion in Eq. (3.13) starting with the kinetic scheme, Eqs. (3.8)
and (3.9). This can be done by the way similar to that dis-
cussed in Appendix B.

C. Competing substrates

When there are two types of the substrate, S1 and S2,
which compete for the enzyme, the kinetic scheme takes the
form

E + S1−→←−
1

E S1−→2 E + P1, (3.14)

E + S2−→←−
3

E S2−→4 E + P2, (3.15)

where E Sj and Pj , j = 1 , 2, are the enzyme–substrate com-
plexes and products of the two types. Events are decays of
the enzyme–substrate complexes. In this case we deal with
four types of events/loops, which are enumerated in the ki-
netic scheme, Eqs. (3.14) and (3.15).

Let P ({n}4 |t) , {n}4 = (n1, n2, n3, n4), be the distribu-
tion function for the numbers of events of different types ob-
served in time t . We can use Eqs. (2.16) and (2.17) to write
the Laplace transform of this distribution function

P̂ ({0}4 |s) = 1

s

(
1 −

4∑
i=1

ŵi (s)

)
, (3.16)

P̂ ({n}4 |s) = (n1 + n2 + n3 + n4)!

n1!n2! n3!n4!

×
(

4∏
i=1

ŵi (s)ni

)
P̂ ({0}4 |s) , (3.17)

where ŵi (s) is the Laplace transform of wi (t)
= Wiϕi (t), i = 1, 2, 3, 4, and we assume that Wi

and ϕi (t) are given or can be found on the basis of the kinetic
scheme (see the details in Appendix D).

The function of our interest is the distribution function of
the numbers of the product molecules, P1 and P2, formed in
time t , F (n2, n4|t),

F (n2, n4|t) =
∞∑

n1,n3=0

P ({n}4 |t). (3.18)

The Laplace transform of this distribution function can be ob-
tained by carrying out the summation and using Eqs. (3.16)
and (3.17) for the Laplace transforms of the distribution func-
tions in the right-hand side of Eq. (3.18). The result is

F̂ (0, 0|s) = 1

s
(1 − v̂1(s) − v̂2(s)) , (3.19)

F̂ (n2, n4|s) = n2!n4!

(n2 + n4)!
v̂1(s)n2 v̂2(s)n4 F̂ (0, 0|s) , (3.20)

where v̂1(s)and v̂2(s) are given by

v̂1(s) = ŵ2(s)

1 − ŵ1(s) − ŵ3(s)
, (3.21)

and

v̂2(s) = ŵ4(s)

1 − ŵ1(s) − ŵ3(s)
. (3.22)

These functions are the Laplace transforms of functions v1(t)
and v2(t) that describe an effective (two channel) renewal pro-
cess with events of two types — formation of the product
molecules P1 and P2. According to Eqs. (3.21) and (3.22) re-
alization probabilities of these events, V1 and V2, are given by

V1 = v̂1(0) = W2

W2 + W4
, (3.23)

and

V2 = v̂2(0) = W4

W2 + W4
. (3.24)

The probability densities of their duration times, respectively,
are v j (t)/Vj , j = 1, 2.

Again, there is an alternative derivation of the expres-
sions in Eqs. (3.21)–(3.24) that starts from the kinetic scheme,
Eqs. (3.14) and (3.15), and follows the way, which is similar
to the one discussed in Appendix B.

D. Single reversible enzyme

The kinetic scheme for a reversible enzymatic reaction
has the form

E + S −→←− E S−→←−E P−→←− E + P. (3.25)

This kinetic scheme describes loops of four different types:

1. E + S−→←−
1

E S−→←−E P, (3.26)

2. E + S −→ E S−→←−E P−→2 E + P, (3.27)

3. E + P−→←−
3

E P−→←−E S, (3.28)

4. E + P−→ E P−→←− E S−→4 E + S. (3.29)

Each loop begins with binding to the free enzyme and ends
with the formation of the free enzyme. In the loops of types 1
and 2 the substrate binds to the enzyme while in the loops of
types 3 and 4 the product binds. Events of types 2 and 4 lead to
S → P and P → S conversions, respectively, while events of
types 1 and 3 do not. Schemes 1 and 3 represent the situations
when a substrate/product binds to the enzyme and then the
complex decays back into the enzyme and substrate/product.

The substrate and the product play roles of the two sub-
strates competing for the enzyme discussed in Sec. III C.
Therefore, we use some results of this subsection in our fur-
ther analysis. We deal with a four-channel renewal process.
For such a process the Laplace transform of the distribution
function of the numbers of events of different types observed
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in time t is given in Eqs. (3.16) and (3.17). The Laplace
transform of the distribution function of the numbers of the
S → P and P → S conversions in time t (n2 and n4, respec-
tively), F (n2, n4|t), is given in Eqs. (3.19) and (3.20).

We use these results to find the Laplace transform of the
distribution function of the net number of substrate molecules
converted into product in time t , �n = n2 − n4. Denoting this
distribution function by f (�n|t) we can write

f (�n|t) =
∞∑

n2,n1=0

δn2−n4, �n F(n2, n4|t), (3.30)

where δl,m is the Kronecker delta. Using the integral represen-
tation of the Kronecker delta,

δl,m = 1

2π

∫ π

−π

eiθ(l−m)dθ, (3.31)

the Laplace transform of f (�n|t) can be written as

f̂ (�n|s) = 1

2π

∫ π

−π

f̂ (θ |s)e−iθ�ndθ, (3.32)

where f̂ (θ |s) is defined as

f̂ (θ |s) =
∞∑

n2,n4=0

F̂(n2, n4|s)eiθ(n2−n4). (3.33)

Using Eqs. (3.19) and (3.20) and performing the summation
we find

f̂ (θ |s) = 1

1 − v̂1(s)eiθ − v̂2(s)e−iθ
, (3.34)

where v̂1(s)and v̂2(s) are given in Eqs. (3.21) and (3.22). Sub-
stituting this into Eq. (3.32) and carrying out the integration
we obtain

f̂ (�n|s) = 1

k̂(s) − 1

(
v̂1(s)

v̂2(s)

)�n/2

×
[

2
√

v̂1(s)v̂2(s)

k̂(s)

]|�n|
F̂(0, 0|s), (3.35)

where

k̂(s) = 1 +
√

1 − 4v̂1(s)v̂2(s). (3.36)

The result in Eq. (3.35) can be alternatively obtained if
one consider a random walk, in which every S → P and
P → S conversion corresponds to a step in the forward
and backward direction, respectively.2 For this random walk,
functions v1(t) and v2(t) are products of the forward and
backward step probabilities, Vi = v̂i (0), i = 1, 2, and the
corresponding conditional step time probability densities,
v1(t)/Vi . Distribution function f (�n|t) is the propagator for
this random walk. Its Laplace transform can be found us-
ing the exact solution for the Laplace transform of the ran-
dom walk propagator.16 Eventually this leads to the result in
Eq. (3.35).

IV. CONCLUDING REMARKS

The present paper is focused on the multivariate distribu-
tion functions of the numbers of events of different types in

time t in single-molecule systems. Our approach to the prob-
lem exploits the fact that the desired distribution functions are
identical to the probabilities that corresponding sets of events
have happened in time t. Main results of the present paper are
the expressions for the Laplace transforms of such distribu-
tion functions given in Eqs. (2.16), (2.17), (2.23), and (2.25).
The former correspond to the situation in which the observa-
tion starts immediately after an event has occurred. The latter
correspond to the situation in which the observation starts at
an arbitrary moment of time.

It might happen that such multivariate distribution func-
tions provide too detailed description of the system. Keeping
this in mind in Sec. III we show how unnecessary information
can be eliminated, and the Laplace transforms of the distri-
bution functions of the numbers of events of interest can be
obtained from the general results. These transforms can fur-
ther be used to find the Laplace transform of the distribution
function of a more complex variable like the net number of
the substrate molecules converted into product in time t by a
single reversible enzyme considered in Sec. III D.

Finally, we note that the distribution functions discussed
in the paper have another meaning. The point is that each real-
ization of the multichannel renewal process can be considered
as a realization of a nearest neighbor random walk on a multi-
dimensional lattice. The random walk is unidirectional since
the numbers of events cannot decrease. Thus, the distribution
functions discussed above are the propagators for such ran-
dom walks, and the results obtained in the paper provide exact
solutions for the Laplace transforms of such propagators.
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APPENDIX A: Wi AND ϕi (t) FOR THE KINETIC
SCHEME IN EQ. (3.1)

Consider an enzyme–substrate complex formed at t = 0.
Eventually this complex decays forming either the enzyme
and substrate, E S → E + S(channel 1), or the enzyme and
product, E S → E + P (channel 2). We denote the fraction
of realizations that decays in channel i, i = 1, 2, between t
and t + dt by ui (t)dt . Then the realization probability Wi is
given by

Wi =
∫ ∞

0
ui (t)dt = ûi (0), (A1)

where ûi (s) is the Laplace transform of ui (t).
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To find ϕi (t) consider a free enzyme created at t = 0 im-
mediately after a decay of an E S complex. Let uE (t) be the
probability density of the enzyme lifetime, i.e., for the time
interval between the decay of a E S complex and successive
formation of a new E S complex. We can write the rate of ac-
cumulation of the probability Wi , wi (t), i = 1, 2, in term
of uE (t) and ui (t) as

wi (t) =
∫ t

0
ui (t − t ′)uE (t ′)dt ′. (A2)

Since Wi = ∫ ∞
0 wi (t)dt, we have

ϕi (t) = 1

Wi
wi (t). (A3)

The Laplace transform of ϕi (t) is given by

ϕ̂(s) = 1

Wi
ûi (s)ûE (s) = ûi (s)ûE (s)

ûi (0)
. (A4)

When both the E S complex formation and its decay are
single-exponential, the processes is characterized by the rate
constants, k0, k1, and k2, respectively, and Eq. (3.1) takes the
form

E + S −→←−
k1

k0
E S−→k2 E + P. (A5)

In this case we have

uE (t) = k0 [S] e−k0[S]t , (A6)

where [S] is the concentration of the substrate, and

ui (t) = ki e
−kt , i = 1, 2, (A7)

where k = k1 + k2. Using Eqs. (A6) and (A7) we obtain

Wi = ki

k
, (A8)

and

ϕ1(t) = ϕ2(t) = kk0 [S]

k − k0 [S]

(
e−k0[S]t − e−kt

)
. (A9)

APPENDIX B: DERIVATION OF v̂(s) IN EQ. (3.7)

Based on the kinetic scheme in Eq. (3.1) we can write the
following integral equation for the probability density v(t):

v(t) = w2(t) +
∫ t

0
v(t − t ′)w1(t ′)dt ′. (B1)

The two terms on the right-hand side are due to realizations
in which the first decay of the E S complex either leads to the
formation of the product (the first term) or not (the second
term). After the Laplace transform, Eq. (B2) takes the form

v̂(s) = ŵ2(s) + v̂(s)ŵ1(s). (B2)

Solving this equation one recovers the expression in
Eq. (3.7).

APPENDIX C: Wi AND ϕi (t) FOR THE KINETIC
SCHEME IN EQS. (3.8) AND (3.9)

Consider a free enzyme created at t = 0 immediately af-
ter a decay of either an E S or an E I complex. Let uE (t)

be the probability density of the enzyme lifetime. The en-
zyme disappears forming a complex either with a substrate,
E + S → E S, or with an inhibitor, E + I → E I . Therefore,
uE (t) is the sum of the corresponding terms,

uE (t) = u(S)
E (t) + u(I )

E (t). (C1)

If the binding kinetics is single-exponential, the two terms are
given by

u(S)
E (t) = kS[S]e−(kS [S]+kI [I ])t , (C2)

u(I )
E (t) = kI [I ]e−(kS [S]+kI [I ])t , (C3)

where [S] and [I ] are the substrate and inhibitor concentra-
tions while kS and kI are the corresponding rate constants.

The enzyme–substrate complex decays forming either
the enzyme and substrate, E S → E + S (channel 1 in the
kinetic scheme), or the enzyme and product, E S → E + P
(channel 2 in the kinetic scheme). We denote the fraction of
realizations that decays in channel i , i = 1, 2, between t and
t + dt by ui (t)dt , and the lifetime probability density of the
inhibitor–enzyme complex by u3(t). With these notations, we
can write functions wi (t), i = 1, 2, 3, as

wi (t) =
∫ t

0
ui (t − t ′)u(S)

E (t ′)dt ′ , i = 1, 2, (C4)

w3(t) =
∫ t

0
u3(t − t ′)u(I )

E (t ′)dt ′. (C5)

Their Laplace transforms are given by

ŵi (s) = ûi (s)û(S)
E (s) , i = 1, 2, (C6)

ŵ3(s) = û3(s)û(I )
E (s). (C7)

Using these Laplace transforms one can find the probabilities
Wi , Wi = ŵi (0), and the Laplace transforms of the probability
densities ϕi (t), ϕ̂i (s) = ŵi (s)/Wi , i = 1, 2, 3.

APPENDIX D: Wi AND ϕi (t) FOR THE KINETIC
SCHEME IN EQS. (3.14) AND (3.15)

When two substrates compete for a free enzyme, the
probability density of the enzyme lifetime, uE (t), is given by
the two-term formula analogous to the one in Eq. (C1),

uE (t) = u(S1)
E (t) + u(S2)

E (t), (D1)

where the term u
(Sj )
E (t) describes disappearance of the free

enzyme in the process E + Sj → E Sj , j = 1, 2. When the
kinetics of binding is single-exponential, the two terms are
given by

u
(Sj )
E (t) = k j [Sj ]e

−(k1[S1]+k2[S2])t , j = 1, 2, (D2)

where [Sj ] is the concentration of the substrate of type j and
k j is the corresponding rate constant.

The enzyme–substrate complex E Sj decays forming ei-
ther the enzyme and substrate, E Sj → E + Sj (channels 1
and 3 in the kinetic scheme), or the enzyme and product,
E Sj → E + Pj (channels 2 and 4 in the kinetic scheme).
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Denoting the fraction of realizations that decays in channel i ,
i = 1, 2, 3, 4, between t and t + dt by ui (t)dt , we can write
functions wi (t), i = 1, 2, 3, 4, as

wi (t) =
∫ t

0
ui (t − t ′)u(S1)

E (t ′)dt ′ , i = 1, 2, (D3)

wi (t) =
∫ t

0
ui (t − t ′)u(S2)

E (t ′)dt ′ , i = 3, 4. (D4)

Their Laplace transforms are given by

ŵi (s) = ûi (s)û(S1)
E (s) , i = 1, 2, (D5)

ŵi (s) = ûi (s)û(S2)
E (s) , i = 3, 4. (D6)

Using these Laplace transforms one can find the probabilities
Wi , Wi = ŵi (0), and the Laplace transforms of the probability
densities ϕi (t), ϕ̂i (s) = ŵi (s)/Wi , i = 1, 2, 3, 4.
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